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1. Introduction

The equations of motion of several quantum �eld theories of physical interest have
classical static solutions that can be interpreted as possessing string-like defects. Such solu-
tions spontaneously break translation invariance in the D�2 transverse space dimensions.
As a result, there are Nambu-Goldstone massless excitations about such backgrounds, even
if the �eld theory has only massive excitations about homogeneous background con�gura-
tions. These massless modes have wavefunctions supported in the vicinity of the spacetime
sheet swept out by the defect, so the e�ective �eld theory describing low energy phenomena
about such classical solutions is two dimensional. On general grounds, the leading term in
the action for these modes must take the form

S � So � const.

Z
dtdy

h�
@tf

i
�2 � �

@yf
i
�2i

;

where S is the action of the underlying �eld theory, So is the action governing low energy
phenomena, i = 1; : : : ;D � 2; and we have chosen the (t; y) plane as the plane of the
worldsheet.

The derivation of So (and higher terms) is standard, and excellent treatments are
available in the literature, including careful treatments of the introduction of collective
coordinates. We have not, however, found a calculation of the Lorentz transformations
starting from the underlying �eld theory. In this note we do this in a 2 + 1 dimensional
example and show that Lorentz invariance in such theories (of long e�ective strings) is a
consequence of cancellations between So and terms that are irrelevant for long-distance
physics.

We consider the induced quantization of one string, neglecting overhangs and many
string (interacting or not) sectors. Large overhangs produce e�ects suppressed by exponen-
tials of the form exp(�const.mR); where R is a length-scale characterizing the overhang.
For small overhangs (R = O(1=m)), the curvature (/ R�2) becomes large enough that
the interactions of the Goldstone bosons cannot be neglected, or equivalently, the long
distance e�ective �eld theory description is not appropriate.

Section two is a brief review of the e�ective action governing f: Section three provides
a quick derivation of the Lorentz algebra, section four concludes.

The problems a�icting massless �elds in two dimensions are not relevant to the dis-
cussion. It will be assumed that we are just above the roughening transition, or that
appropriate boundary conditions are in place.

2. Review�

The speci�c example is a real scalar �eld in 2+1 dimensions, with an action:

S � 1

2

Z
d3x

�
@r�@

r�� �(�2 � m2

�
)2
�
:

� See Wallace and Zia[1], Diehl, Kroll and Wagner[2], and L�uscher[3] for much of the
material in this section.

2



The metric �ij has signature + ��; and the coordinates are xr � (t; y; z) � (y�; z): The
equation of motion is

@2�+ 2�(�2 � m2

�
)� = 0:

Static con�gurations invariant under translations in the y direction are solutions of

�@2z�(z) + 2��(z)3 � 2m2�(z) = 0:

The classical solution corresponding to one string (or domain wall) is

�cl(x) � mp
�
tanhmz: (1)

There are other solutions to the boundary conditions � ! �m=p�(z ! �1); but these
are multi-string con�gurations. The spectrum of uctuations about the kink solution is
known and corresponds to eigenvalues of the operator 
 = �(@z � 2

p
��cl)(@z + 2

p
��cl);

�0 = 0 :  0 =

p
3m

2
sech2(mz) �

r
3�

4m3
�0(z);

�1 = 3m2 :  1 =

r
3m

2
sech(mz) tanh(mz);

�k = k2 + 4m2 :  k =

p
m exp(ikz)p

k4 + 5k2m2 + 4m2

�
3 tanh2(mz) � 3ik

m
tanh(mz) � (

k2

m2
+ 1)

�
:

= m2
k

The physical signi�cance of these modes is as follows:
(a) The zero-mode is the Nambu-Goldstone boson, since �0 = @z�cl:
(b) The other localized mode has mass

p
3m and is referred to as the kink `excitation' in

the literature. It corresponds to a squeezing of the string. To see this, compute the
normalized overlap of zd�cl=dz and  1: This is �

p
3=
p
8�2 � 48 � 0 � 978:

(c) A continuum starting at mass 2m; with k taking arbitrary real values|these modes
are the counterparts of the spectrum obtained when expanding about a homogeneous
background �cl(x) = �m=p�:
A single classical solution with �xed kink position is not a good ground state to

quantize around because of the massless mode corresponding to moving the wall. Instead
one introduces a variable describing the position of the wall and integrates over it. The
position of the wall is a collective coordinate. It can be introduced in the path integral
fomulation derived by Gildener and Patrascioiu[4] of the implicit collective coordinate
method due to Christ and Lee[5]. Writing

�(t; y; z) � �cl (z � f(t; y)) + � (t; y; z � f(t; y)) ;

where

�(t; y; z + �) = a0(t; y) 0(z + �) + a1(t; y) 1(z + �) +

Z
dkak(t; y) k(z + �)

3



shows the coeÆcient of the zero mode explicitly. The integral over k is schematic, it is
not necessary to be precise since loop e�ects will not be considered. Inserting

Q
df(t; y)

Æ(g(f))jÆg=Æf j = 1 into the path integral, g(f) =
R
dz@z�cl(z � f)�(z), the functional

integral becomes: Z
DfD��[�]

Y
t;y

Æ

�Z
dz0�0(z

0)�(z0)

�
eiS :

Here

� �
Y
t;y

Z
dz0�0 (z

0 � f(t; y)) @z0�(t; y; z0) = �(a)

is actually independent of f and a0. The functional integral for � is de�ned, as usual,
as an integral over the coeÆcient �elds, ai: The integral over a0 then eliminates the delta
function, and all dependence on a0, and the collective coordinate �eld, f; is left in its stead.
Thus, � can be treated henceforth as if a0 = 0: �(a) enters the action at order �h and so will
be neglected in the following. Terms in the perturbative expansion arising from � need to
be regulated. Its �eld independent term is a constant, so using dimensional regularization
� can be set to one[1].

The action now takes the form

S = �m
�

Z
d3x

�
�20 �

1

2
@�f@

�f [�0 + @z�]
2 � 1

2
�
��@�@� + @2z � 6�2cl + 2

�
�

+ 2�cl�
3 +

1

2
�4 + @��@

�f@z�

�
:

All the f dependence is explicit and we have rescaled �elds and coordinates so that all de-
pendence on the parametersm and � appears, as it must, in the dimensionless combination
m=�:

It is convenient in the some of the following to work with the components of � de-
composed in terms of the normalized wavefunctions,  i; i = 1; : : : : De�ne �̂ � ( 1;  k) and
â � (a1; ak) as vectors, so � = â � �̂; and let 
̂ be the mass matrix, which in the  basis, is
diag(3; k2 + 4)): Integrating out z, S is now

�m
�

Z
dtdy

�
h0j0i � 1

2
@�f@

�f
�h0j0i+ 2akh0j@z jki � ajakhjj@2z jki

�
+
1

2
ai

�
@�@

� + 
̂
�
ai

+ 2hij j�cljkiaiajak + 1

2
hij j kjliaiajakal + @�f@

�ajhjj@zjkiak
�
;

where hijg(z)jji � R
dz i(z)g(z) j (z). Note that j0i will denote �0(z); which is not nor-

malized,
R
�20(z)dz = 4=3: This exact rewriting of the action in the one string sector is a

two dimensional �eld theory with a single massless �eld f(t; y), the position of the wall,
interacting with an in�nite number of massive �elds fai(t; y)g.

The equation of motion for â is

�� @�@
� � 
̂� (@f)2@2z + 2@�f@�@z + (@�@

�f)@z
�
�

= @z�0(@f)
2 + 6�cl�

2 + 4�3;
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which can be solved, since 
̂ is invertible, to obtain â as a series in @�f; a useful expansion
in the long wavelength limit. One obtains � = �(2) + �(4) + �(2;2) + : : : ; where

�(2) = �
̂�1@z�0(@f)
2;

�(4) = �
̂�1
h
@2z (@f)

2 + 6�cl�
(2)
i
�(2);

�(2;2) = 
̂�2@z�0@�@
�(@f)2:

In components, this amounts to

ai =�
n
hij
̂�1@zj0i � hij
̂�2@z j0i@2

o
(@f)2

+
n
hij
̂�1@2z 
̂

�1@zj0i+ 6hij j�cljkihjj@zj0ihkj@zj0i
o
(@f)4 + : : : :

Using the identity of [2],

@z =
1

2
[z;
] , < ij@zjj >= 1

2
(m2

j �m2
i ) < ijzjj >;

and substituting for �, (i.e., integrating out �), we �nd (showing up to O(@8))

S = �m
�

Z
d2y

�
h0j0i

�
1� 1

2
(@f)2 � 1

8
(@f)4 � 1

16
(@f)6 + : : :

�

+
1

8
h0jz2j0i(@f)2@�@�(@f)2 + : : :

�
:

(2)

The �rst four terms, as shown by [2], give the leading terms in the expansion of
p
1� (@f)2,

the Nambu-Goto action, with induced metric hij = �ij � @if@jf . The last term shown
can be rewritten partly as the curvature of the induced metric, but there are additional
terms as well, which do not appear to have a geometric interpretation. Since the coeÆcient
of this term is non-universal, the appearance of non-geometric terms is not surprising|it
does appear to contradict the work of Ref. 6. It may be that di�erent parametrizations of
the collective coordinates lead to di�erent non-universal terms.

3. Lorentz transformations

The canonical Lorentz generators are

Mrs �
Z

dydz [j0rxs � j0sxr ] :

where
jrs � ��rsL+ @r�@s�

are the translation currents.
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An arbitrary variation of � can be written as

Æ�(z) =� Æf@z�(z) + Æâ �  (z � f(t; y))

=Æa0 0(z � f(t; y)) + Æ~̂ai i(z � f(t; y))

since a complete basis (a0; ~̂ai) is dual to the complete set of  i. We then have

�
Æa0
Æ~̂ai

�
=

�� R dz@z�(z) 0(z � f(t; y)) 0
� R dz@z�(z) i(z � f(t; y)) 1

��
Æf
Æâi

�

Inverting this gives P� � �iÆ=Æ�; the momentum conjugate to �; in terms of the momenta
conjugate to f and ai;

Æ

Æ�
=
��0(z � f(t; y))

�(â)

Æ

Æf
+

�
��0(z � f(t; y))âk hij@z jki

�(â)
+  i(z � f(t; y))

�
Æ

Æâi
:

One can verify that [P�(t; y; z); �(t; y0 ; z0)] = �iÆ(z � z0)Æ(y � y0) .
Ordering ambiguities do not change the commutation relations to leading order in

�h. In the present context the possible ordering ambiguities which are subleading are also
not of concern because it is possible to regulate the theory without violating any relevant
symmetry.

With these expressions at hand, it is straightforward to evaluate the action of the
Lorentz generators on f and ai:

[M0y; f ] = i(t@yf + y@0f)

[M0y; aj ] = i(t@yaj + y@0aj )

[M�z; f ] = i

�
� y� + f@�f +

@�f

�(â)
ajh0jz@z jji � @�aj

�(â)
h0jzjji

�

[M�z; aj ] = i

�
@�akhjjzjki � @�aiak

h0jzjiihjj@z jki
�(â)

� @�f

�
hjjzj0i + hjjz@z jkiak � aiak

h0jz@z jkihjj@zjii
�(â)

�
+ f@�aj

�

These are valid to leading order in �h: One can substitute � = �(f); as derived in section two,
to obtain the complete nonlinear transformations that leave the e�ective action governing
f (eq. 2) invariant. This substitution only a�ects Lorentz transformations of f beginning at
order @3: The �rst two terms in the transformation of f are independent of the details of the
wavefunctions and of the potential, and are thus universal (if the kinetic term is canonical,
for other possibilities see [7]). They also leave the measure invariant, even though they are
nonlinear. The supersymmetric version of the universal part of the transformations was
found in [8], using the Volkov-Akulov formalism[9].

4. Concluding remarks

The computations given above are entirely straightforward, and nothing untoward or
unexpected was found. The result is the complete, albeit intractable and impractical, form
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of the Lorentz transformations, to all orders in the derivative expansion, and leading order
in �h.

This di�ers from the Lorentz algebra of the fundamental string in light cone gaugey.
In that case, So is the full action after solving the constraints. Upon quantizing, Lorentz
transformations require compensating conformal transformations to close unless d = 2; 3.
These conformal transformations are not symmetries in the quantized theory unless d = 26.
The coordinates used in our example, Xr = (t; y; z + f(t; y)) do not obey the light cone
conditions ( _X � X 0)2 = 0, the underlying �eld theory was not quantized in light cone
gauge. A direct comparison of the algebra induced from the �eld theory with that of
fundamental strings involves the quantization of an interacting scalar �eld theory in light-
cone coordinates, a diÆcult task (aside from integrable theories in two dimensions, which
are in some sense free).

Here no conformal invariance is assumed or used.z The variations of irrelevant terms
cancel the variation of So; because the nontrivial Lorentz transformations of f start with
an inhomogenous universal term of dimension�1: The light cone gauge fundamental string
can also be described by So, but a �xed point theory describes the long (or short) distance
behaviour of an entire universality class of theories|it does not follow that a global sym-
metry, e.g. Lorentz invariance, that appears in a given element of the universality class is
common to every other element.

To consistently look at higher orders in �h requires summing over loops in the underly-
ing �eld theory, �nding a stringlike solution of the e�ective action (rather than potential)
and then repeating the procedure of eliminating the massive �elds in the derivative expan-
sion. (Repeating from earlier, there will also be contributions from the collective coordinate
Jacobian at higher orders, which depend on the regulator chosen. These contributions van-
ish in dimensional regularization.) All the terms obtained by using the equations of motion
to eliminate massive excitations are explicitly local. It is not clear to us that the Polyakov{
Liouville term formed out of the induced metric can be made local in the gauge choice
inherited from the underlying �eld theory.

Classical solutions depend on the parameters in the action, in the case above on m
and �. Modifying these parameters alters the width of the string and its string tension. A
question of interest is: are there values of these parameters that lead to the decoupling of
all uctuations, other than the Goldstone mode? In other words, when does the quantum
theory, expanded about a classical solution with a string defect, exhibit the characteristics
of a structureless fundamental string? Nielsen and Olesen[10] addressed this question and
argued that the string is e�ectively of zero width when the length scale for the energy levels
for excitations of the string (set by the string tension �0) is much greater than the length
scales characterizing the width of the string (the penetration depth � and the correlation
length � in the Abelian Higgs model), i.e.

p
�0 � �; �. In the Abelian Higgs model, this

y For the particular case of 2+1 dimensions, the light-cone Lorentz algebra is nonanoma-
lous since it has only one nonlinear generator. Inconsistencies appear at the level of
interactions.

z While this work was being prepared for publication, A. Shapere pointed Ref. [8] out
to us where some of these observations are independently made, cited as J. Polchinski
(unpublished).
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requirement translated into the electric charge, e � 1. (For ux tubes with more ux
the e�ective charge decreases.) This implies that the physical paradigm for their model,
ux tubes in strongly type II superconductors, are not well described by structureless
fundamental strings either[11]. Chromoelectric ux tubes in lattice QCD have

p
�0 of

about the same order of magnitude as the transverse width, 0 � 5 fm[12].
The example discussed in this paper can be studied with the same criterion, putting

back in the original �;m dependence of the �elds and coordinates. The classical string
solution in equation (1) has a characteristic width m�1, of the order of the mass of uc-
tuations about homogeneous backgrounds. The other scale is the energy density of the
classical solution which sets the energy scale for excitations of the string:

1

�0
/
Z

dz (@z�cl(z))
2 / m3

�
:

The string is `thin' when uctuations of the string will not excite the internal modes, i.e.

m� 1p
�0
/ m3=2

p
�

, �� m :

So in this case as well, the thin string condition is the strong coupling limit. As Nielsen
and Olesen pointed out, this is the �h ! 1 limit, which makes `classical �eld considera-
tions very doubtful'. For the example studied here, this limit (in Euclidean space) is in
the universality class of the high temperature ferromagnetic Ising model, where entropic
considerations dominate over energetic considerations. Thus although an isolated sector
of the theory with a single string is an energetically preferred classical con�guration, the
uctuations around it are so large (`1=�h' is small) that it is not a good approximation to
the most probable state of the system�.

The above discussion gives little insight into the quantization of the Nambu-Goto area
action in dimensions other than 26. There are various suggestions in the literature, such
as including the e�ects of `kinks'[13] (making the string massive, quantizing, and then
taking the massless limit), or adding to So a non-polynomial term in the f i's, and then
using conformal invariance to �x its coeÆcient[14]. For a further study of the proposal in
[14], see [15]. As was �rst argued by Nielsen and Olesen[10], and also seen in the exam-
ple studied here, the thin string limit (where an area interpretation of the action might
apply) corresponds to strong coupling. In this limit the Lorentz transformations here are
renormalized, but beyond this it is hard to make de�nitive statements. Although prob-
lems in quantizing the Nambu-Goto string outside of the critical dimension may manifest
themselves as failures of Lorentz invariance, there is no inconsistency in the Lorentz trans-
formation properties of e�ective strings in any regime where their existence can be reliably
assumed.

� In Ref. [2] it is argued that one can neglect higher loops in the strong coupling limit.
This seems to be incorrect; no details are given, however, so this may be due to misunder-
standing on our part.
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